Data SciencePython Courses

Data Science with Python Masterclass Complete PDF Course 2020

What this book covers

Chapter 1,

Getting Started with Raw Data, teaches you the techniques of handling unorganized data. You’ll also learn how to extract data from different sources, as well as how to clean and manipulate it.

Chapter 2,

Inferential Statistics, goes beyond descriptive statistics, where you’ll learn about inferential statistics concepts, such as distributions, different statistical tests, the errors in statistical tests, and confidence intervals.

Chapter 3,

Finding a Needle in a Haystack, explains what data mining is and how it can be utilized. There is a lot of information in data but finding meaningful information is an art.

Chapter 4,

Making Sense of Data through Advanced Visualization, teaches you how to create different visualizations of data. Visualization is an integral part of data science; it helps communicate a pattern or relationship that cannot be seen by looking at raw data.

Chapter 5,

Uncovering Machine Learning, introduces you to the different techniques of machine learning and how to apply them. Machine learning is the new buzzword in the industry. It’s used in activities, such as Google’s driverless cars and predicting the effectiveness of marketing campaigns.

Chapter 6,

Performing Predictions with a Linear Regression, helps you build a simple regression model followed by multiple regression models along with methods to test the effectiveness of the models. Linear regression is one of the most popular techniques used in model building in the industry today.

Chapter 7,

Estimating the Likelihood of Events, teaches you how to build a logistic regression model and the different techniques of evaluating it. With logistic regression, you’ll be able learn how to estimate the likelihood of an event taking place.

Chapter 8,

Generating Recommendations with Collaborative Filtering, teaches you to create a recommendation model and apply it. It is similar to websites, such as Amazon, which are able to suggest items that you would probably buy on their page.

Chapter 9,

Pushing Boundaries with Ensemble Models, familiarizes you with ensemble techniques, which are used to combine the power of multiple models to enhance the accuracy of predictions. This is done because sometimes a single model is not enough to estimate the outcome.

Chapter 10,

Applying Segmentation with k-means Clustering, teaches you about k-means clustering and how to use it. Segmentation is widely used in the industry to group similar customers together.

Size: 5.59MB

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button